Direct Numerical Simulation of the Sedimentation of Solid Particles with Thermal Convection
نویسندگان
چکیده
Dispersed two-phase flows often involve interfacial activities such as chemical reaction and phase change, which couple the fluid dynamics with heat and mass transfer. As a step toward understanding such problems, we numerically simulate the sedimentation of solid bodies in a Newtonian fluid with convection heat transfer. The two-dimensional Navier–Stokes and energy equations are solved at moderate Reynolds numbers by a finite-element method, and the motion of solid particles is tracked using an arbitrary Lagrangian–Eulerian scheme. Results show that thermal convection may fundamentally change the way that particles move and interact. For a single particle settling in a channel, various Grashof-number regimes are identified, where the particle may settle straight down or migrate toward a wall or oscillate laterally. A pair of particles tend to separate if they are colder than the fluid and aggregate if they are hotter. These effects are analysed in terms of the competition between the thermal convection and the external flow relative to the particle. The mechanisms thus revealed have interesting implications for the formation of microstructures in interfacially active two-phase flows. Disciplines Engineering | Mechanical Engineering Comments Suggested Citation: Gan, Hui, Jianzhong Chang, James J. Feng and Howard H. Hu. (2003). Direct numerical simulation of the the sedimentation of solid particles with thermal convection. Journal of Fluid Mechanics. Vol. 481. p. 385-411. Copyright 2003 Cambridge University Press. http://dx.doi.org/10.1017/S0022112003003938 This journal article is available at ScholarlyCommons: http://repository.upenn.edu/meam_papers/209 J. Fluid Mech. (2003), vol. 481, pp. 385–411. c © 2003 Cambridge University Press DOI: 10.1017/S0022112003003938 Printed in the United Kingdom 385 Direct numerical simulation of the sedimentation of solid particles with thermal convection By HUI GAN, J IANZHONG CHANG, JAMES J. FENG AND HOWARD H. HU The Levich Institute for Physicochemical Hydrodynamics, City College of the City University of New York, New York, NY 10031, USA Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA (Received 11 September 2002 and in revised form 6 December 2002) Dispersed two-phase flows often involve interfacial activities such as chemical reaction and phase change, which couple the fluid dynamics with heat and mass transfer. As a step toward understanding such problems, we numerically simulate the sedimentation of solid bodies in a Newtonian fluid with convection heat transfer. The twodimensional Navier–Stokes and energy equations are solved at moderate Reynolds numbers by a finite-element method, and the motion of solid particles is tracked using an arbitrary Lagrangian–Eulerian scheme. Results show that thermal convection may fundamentally change the way that particles move and interact. For a single particle settling in a channel, various Grashof-number regimes are identified, where the particle may settle straight down or migrate toward a wall or oscillate laterally. A pair of particles tend to separate if they are colder than the fluid and aggregate if they are hotter. These effects are analysed in terms of the competition between the thermal convection and the external flow relative to the particle. The mechanisms thus revealed have interesting implications for the formation of microstructures in interfacially active two-phase flows.
منابع مشابه
Numerical Simulation of Mixed Convection Flows in a Square Double Lid-Driven Cavity Partially Heated Using Nanofluid
A numerical study has been done through an Al2O3–water in a double lid-driven square cavity with various inclination angles and discrete heat sources. The top and right moving walls are at low temperature. Half of the left and bottom walls are insulated and the temperatures of the other half are kept at high. A large number of simulations for a wide range of Richardson number ...
متن کاملLattice Boltzmann simulation of EGM and solid particle trajectory due to conjugate natural convection
The purpose of this paper is to investigate the EGM method and the behavior of a solid particle suspended in a twodimensional rectangular cavity due to conjugate natural convection. A thermal lattice Boltzmann BGK model is implemented to simulate the two dimensional natural convection and the particle phase was modeled using the Lagrangian–Lagrangian approach where the solid particles are treat...
متن کاملCFD Investigation of Gravitational Sedimentation Effect on Heat Transfer of a Nano-Ferrofluid
In the present attempt, flow behavior and thermal convection of one type of nanofluids in a disc geometry was investigated using Computational Fluid Dynamics (CFD). Influence of gravity induced sedimentation also has been studied. The commercial software, Fluent 6.2, has been employed to solve the governing equations. A user defined function was added to apply a uniform external ma...
متن کاملEvaluation of Eulerian Two-Fluid Numerical Method for the Simulation of Heat Transfer in Fluidized Beds
Accurate modeling of fluidization and heat transfer phenomena in gas-solid fluidized beds is not solely dependent on the particular selected numerical model and involved algorithms. In fact, choosing the right model for each specific operating condition, the correct implementation of each model, and the right choice of parameters and boundary conditions, determine the accuracy of the results i...
متن کاملMixed convection on radiative unsteady Casson ferrofluid flow due to cone with Brownian motion and thermophoresis: A numerical study
In this study, the Brownian motion and thermophoresis effects on the MHD ferrofluid flow over a cone with thermal radiation were discussed. Kerosene with the magnetic nanoparticles (Fe3O4) was considered. A set of transformed governing nonlinear coupled ordinary differential equations were solved numerically using Runge-Kutta based shooting technique. A simulation was performed by mixing ferrou...
متن کامل